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The problem on the penetration of a wedge into an incompressible fluid 
was considered in [ 1 1 through [ 5 1. The analogous problem taking com- 
pressibility iato account was solved for the case of a thin wedge [ 6 1. 

In the present paper the plane problem is considered, regarding the 
immersion into a compressible liquid of a wedge of finite apex angle 2a 
with a constant velocity v,,, which is assumed to be small as compared to 
the sound velocity D in the medium. The liquid is assumed to be ideal 
and weightless. In its exact formulation this problem is nonlinear and 
so far has not been solved. 

Under the condition of smallness of the penetration velocity, however, 
the changes in all hydrodynamic quantities in the given problem will be 
small, on the strength of which they may be treated in acoustic approxi- 
mation. 

The problem considered is of interest, because under realistic con- 
ditions of penetration we deal with bodies of finite dimensions, when 
their idealization as thin blades becomes invalid. 

In treating the problem on the penetration of a thin wedge, the con- 
dition of flow of the solid surface is referred to the axis of the wedge. 
In the case of a finite wedge angle, however, this condition is not 
satisfied, which leads to a considerable complication of the boundary 
condition in the region of perturbed motion in the plane of Chaplygin 
variables. The problem is solved by means of conformal mapping of the 
region of perturbed motion on the upper half-plane and by reduction to a 
Hilbert boundary-value problem with discontinuous coefficients. 

1. Let the apex of the wedge touch the free surface at the instant of 
time t = 0. For any t > 0 we will have in the region of perturbed motion, 

bounded by a Mach wave, the free surface and the wedge surface: 

‘718 
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Here x, y are fixed axes of Cartesian coordinates with origin at the 
point of contact of wedge apex and the free surface, t is the tium, p,, 
and Pb are the pressure and density, respectively, of the liquid at rest. 

Let us introduce self-similar variables nl = x/at, y1 c y/at. Then 

Let us substitute Expressions (1.1) into equations which describe the 
plane nonsteady motion of an ideal compressible liquid, and let us elimi- 
nate Ti;, 51 and g,; as a result of linearization we obtain 

Here and in the sequel the bar and the subscript of dimensionless 
quantities will be omitted. 

'l'be problem consists in determining the function p(n, y) satisfying 
in the region ABC0 Equation (1.2) and the following conditions on the 
boundary: 

aP 
-Z 

an 
0 on AB, ap 0 

g= OR AD (1.3) 

p=o O~DC, p=O onBC 

Fig. 1. 

As the wedge penetrates, the free sur- 
face is deformed primarily in the region 
adjacent to the edge of the wedge. In the 
present study this effect is not taken into 
account, and the condition of constancy of 
pressure is referred to the corresponding 
portion of the y-axis. The treatment of 
this problem is a necessary step, because 
later on it will permit the deformation of 
the free surface to be taken into account 

approtimatefy. 

2. Let us pass from the variable z = reie, (z = x + iy) into the plane 
of the variable 4 = reie, (5 = 5 + iI) with the aid of the Chaplygin 
tr~sfo~ation 
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Equation (1.2) for the pressure will then be 
transformed into a iaplace equation in polar co- 
ordinates, the region A BCD of the plane z into 

bounded by arcs a curvilinear qua&angle (Fig. 21, 
of circles AB andDC and segments 
q, and instead of conditions (1.3) 

of axes 4‘ and 
we will have 

Ffg. 2. 

p = 0 on MhuEB ap 0 a: = on AD, 

sina+2@l cosa (1 - E? i- v2) cosa-t_2Eqsina =O 
3 

on BA (2.2) 

(For clarity the corresponding points in different planes are indi- 
cated by like letters.) Thus the problem was reduced to the determina- 
tion of the harmonic function p([, 7) in the region ABCD with boundary 
conditions (2.2). 

Fig. 3. Fig. 4. 

3. The function 

(3.1) 

will transform the region considered into the upper half-plane, with the 
exclusion of the segment BA (Fig. 3). ‘Ihe equations of the curve BA 
could not be obtained in explicit form and for this reason the region 
ABCD of the plane (zo*) is mapped on the upper half-plane approximately. 
To this end we replace the curve BA (it can be shown that it is suffi- 
ciently monotonic) by a circular arc passing through the points A and B 

in such a manner that the mean quadratic deviation of the ordinates of 
the sought curve be a minimum (Fig. 4). 

The function 
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where /3 is the inclination of the tangent to the approximating circle at 
the origin of coordinates, will map the upper half-plane with the exclu- 
sion of the circular segment on the upper half-plane (Fig. 5). 

‘lhe boundary condition (2.2) will be transformed to the following 
condition, satisfied on the real u-axis and the w-plane: 

ff’ Re[ iw’ (5) (e--i= - 
th 

c2eia)] + 2 Im[iw’(lJ (e-is - c2eia)]= 0 on BA 

ko On AD 

(3 3) 

* 
&I 

, p= 0 on DC, p =o on CB 

Here w’(l) is the derivative of the mapping function, and l(u) is a 
function, inverse to (3.1), (3.2). 

d ‘Ihe harmonic function p(u, u) may be considered as the real part 
of some function f(w) = p + iq, analytic in the upper half-plane. Let us 
introduce fl(~) = p1 + iq, = f’(m). Then the boundary condition (3.3) 
for the function fl(w) will take on the form 

(4.1) 

Here ax = 1, bI = 0 (--<~UOo) 
a, = Re [iw’(Q (e-ia- g”eia)] 

6, = _ Im [iw’ (5) ce-ia _ c2eia)l for 5 = ‘C (‘1’ O G ’ 6 ‘A (4.2) 

a, = 0, b, = 1 @*<~uq 

al= 1, b, = 0 (L&g < 24 < + MI 

‘Ihe boundary-value problem for the function fl(w) formulated above is 
a homogeneous Hilbert problem for the upper half-plane with discontinuous 
coefficients. It has a non-unique solution; the character of the solution 
depends upon the type of singularities admitted at the points of discon- 
tinuity of the coefficients of the boundary conditions. In the problem 
considered the real part of the integral 

J(w) = \fdw)dw 
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is the pressure; therefore, the function fl(‘u) must satisfy the follow- 
ing conditions: 

1. ‘l%e function fl(v) must be regular in the upper half-plane, ex- 
cluding the real axis. 

2. At the points B and D of discontinuity of coefficients a,(u) and 
bl(u) the integral J(w) must be bounded. 

3. At infinity J(V) behaves as cto-I. 

4. At the point A a singularity of the function fl(w) is admitted, 
and the character of the singularity is determined by requirements 
2 and 3. 

‘lbe solution of the homogeneous filbert problem is given by the func- 

tion [7 1 

fl (w) = exp [’ +[ t&n-’ f$J$ a&] iP (w) [n (20 - %)I-’ (4.3) 
--co * 

where P(w) is a polynomial which takes on real values on the real axis, 
while u are the abscissas of the points of discontinuity of the function 
tan-’ [ ~,b,/c+z,1. 

‘Ihe function P(w) and the number of values V, are selected in accord- 
ance with the class in which the solution is sought. 

In the multivalued function tan-“(bl/al) we isolate those branches 
which are in the first and fourth quarter. 

We note [ 8 I that at the point of discontinuity v the functions are 

” (u) zz tan-’ Lb1 (U)l% (u)l 
$00 o(~-o)--o(~+o) 

exp f 
rL 

l ~(lp&]=(zLi--) x ,+ww 

and at infinity 
+m 

exp f 
[ \ 

w (U) -!!%I = 1 
. u-WJ 

-co 

In the problem considered 

(4.4) 

(4.5) 
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t < w(B-0)-y+0)((), -- _$<o(A--)-y(.4+O)<0 

o(D-O)-o(D+O) 1 -=- 
3t 2 (4.6) 

lherefore, to satisfy conditions 1 through 4, we must choose 

P(w) = c,, j-&W-%) = (w--uD)(---A) 
n 

Substituting these functions, as well as the values of the coefficients 

al(n) and b,(u) from (4.2) into Ekpression (4.3) t we finally obtain 

fr (?,#) = X1 (Un - w)-” (7.z~ - W)+‘~ x 

u A 

xexp +- 
I s 

tan-’ 
- Im [iw’ (6) (,_‘a - ~2P)]~=~(U) au 

1 
(4.7) 

0 
Re [i~'(Q(e+~ - ~ze'a)]y=ct,j u--w 

Here uA and uD are the abscissas of the points of discontinuity A and 
D, while C is a real constant which is determined from the condition that 
at the face of the wedge the projections of the velocity of the fluid 
particles and of the velocity of wedge penetration must be equal 

l/iii- - 

The expression for 

It is easily shown that the integration constant is equal to zero. 

the pressure is of the form 

Expressions (4.7), (4.8) represent the solution of the problem in the 
w-plane. 

‘Ihe function pfu, V) is regular everywhere in the upper half-plane 
and on the real axis, with the exception of a point A with abscissa uA, 
where there exists a singularity of an integrable type. In the physical 
plane the apex of the wedge corresponds to this point. 

5. Let us consider a thin wedge, The solution (4.71, (4.8) is valid 
in this case for any subsonic penetration velocity. Let CL in the preced- 
ing formulas approach zero. Then 
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At the face of the wedge 

*4B(v = 0, 0 i< u CAP) u. = x2. 

Therefore we will have for the pressure distribution along the wedge 

Formula (5.1) coincides with the solution obtained in [ 6 1 . 

In the case of a thin wedge the formula for the resistive force of 
the wedge during penetration into an incompressible fluid coincides with 
the results of 16 I . In the case of a wedge with a finite angle, only a 
numerical comparison with the available results is possible, since the 
function w(l) which maps the region ABCD on the upper half-plane is 
found approximately. 

We note that this function may be found also in another manner, differ- 
ent form the one suggested in the present paper. ‘Ihe form of the solution, 
however, namely Formula (4.71, does not change. 

‘lbe author is grateful to L.A. Galin for valuable advice. 
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